函数的单调性和奇偶性的概念

函数的奇偶性

详细问题:函数的单调性和奇偶性的概念

核心知识点:函数的奇偶性

函数的奇偶性:优质解答

奇偶性

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数.

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图象的特征:

定理 奇函数的图象关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形.

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增.

偶函数 在某一区间上单调递增,则在它的对称区间上单调递减.

单调性:

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1、x2时都有f(x1)< f(x2).那么就说f(x)在这个区间上是增函数.

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数.

如果函数y=f(x)在某个区间是增函数或减函数.那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的.

注意:(1)函数的单调性也叫函数的增减性;

(2)函数的单调性是对某个区间而言的,它是一个局部概念;

(3)判定函数在某个区间上的单调性的方法步骤:

a.设x1、x2∈给定区间,且x1

以上就是由爱帮我学习网(www.ibanwago.com)为您带来的关于函数的单调性和奇偶性的概念的最佳答案,希望能够帮助您学习理解有关函数的奇偶性的知识点内容。

未经允许不得转载:爱帮我学习网 » 函数的单调性和奇偶性的概念

赞 (0)